

# **Design Example Report**

| Title              | 10W Compact Power Supply using<br>TOP245R  |
|--------------------|--------------------------------------------|
| Specification      | Input: 90 – 300 VAC<br>Output: 6V / 1.67A  |
| Application        | Water Purifier                             |
| Author             | Power Integrations Applications Department |
| Document<br>Number | DER-107                                    |
| Date               | October 26, 2005                           |
| Revision           | 1.0                                        |

## Summary and Features

- 66kHz operation to reduce switching losses in **TOPSwitch-GX**, reduce standby power consumption and reduce burden on input EMI Filter
- Low profile EFD20 ESHEILD<sup>™</sup> transformer construction
- Simple input  $\pi$ -filter
- No Y-cap No X-cap
- 450 VDC input capacitors for increased reliability for continuous 300  $V_{\text{RMS}}$  operation
- No heat sink design D<sup>2</sup>PAK **TOPSwitch-GX** and D-PAK output rectifier
- 10 W (continuous) / 18 W (peak) in 1.6 X 2.5 X 1"

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at *www.powerint.com*.

Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com

# Table Of Contents

| 1  |      | oduction                                     |    |
|----|------|----------------------------------------------|----|
| 2  | Pow  | ver Supply Specification                     | 4  |
| 3  |      | ematic                                       |    |
| 4  | Circ | uit Description                              | 6  |
|    | 4.1  | Input EMI Filtering                          | 6  |
|    | 4.2  | TOPSwitch Primary                            | 6  |
|    | 4.3  | Output Rectification                         | 6  |
|    | 4.4  | Output Feedback                              | 6  |
| 5  | PCE  | 3 Layout                                     | 7  |
| 6  | Bill | Of Materials                                 | 8  |
| 7  | Trar | nsformer Specification                       | 9  |
|    | 7.1  | Electrical Diagram                           | 9  |
|    | 7.2  | Electrical Specifications                    | 9  |
|    | 7.3  | Materials                                    |    |
|    | 7.4  | Transformer Build Diagram                    | 10 |
|    | 7.5  | Transformer Construction                     |    |
| 8  |      | L Transformer Spreadsheet                    |    |
| 9  | Perf | ormance Data                                 |    |
|    | 9.1  | Efficiency                                   |    |
|    | 9.2  | No-load Input Power                          |    |
|    | 9.3  | Regulation                                   |    |
|    | 9.3. |                                              |    |
|    | 9.3. |                                              |    |
| 1( | ) W  | /aveforms                                    |    |
|    | 10.1 | Drain Voltage and Current, Normal Operation  |    |
|    | 10.2 | Output Voltage Start-up Profile at Full Load |    |
|    | 10.3 | Drain Voltage and Current Start-up Profile   |    |
|    | 10.4 | Load Transient Response (Load Step)          |    |
|    | 10.5 | Output Ripple Measurements                   |    |
|    | 10.5 |                                              |    |
|    | 10.5 |                                              |    |
| 1  |      | ontrol Loop Measurements                     |    |
|    | 11.1 | 120 VAC Maximum and 3A Load                  |    |
|    | 11.2 | 240 VAC Maximum and 3A Load                  |    |
| 12 |      | onducted EMI                                 |    |
| 13 | 3 R  | evision History                              | 25 |

## Important Notes:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolated source to provide power to the prototype board.

Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.



#### Introduction 1

This document is an engineering report describing a universal input 6 V / 10 W power supply utilizing a TOP245R. This power supply is intended to be used in a compact adapter for a water purification application. This supply has been design to operate at 300 VAC input continuously as well as provide a peak output current of 3 A for two minutes.

The document contains the power supply specification, schematic, bill-of-materials, transformer documentation, printed circuit layout, and performance data.

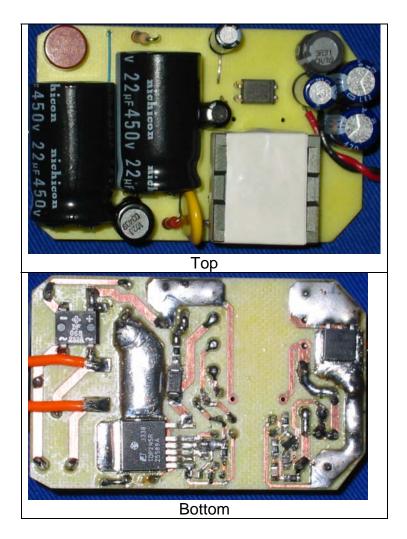
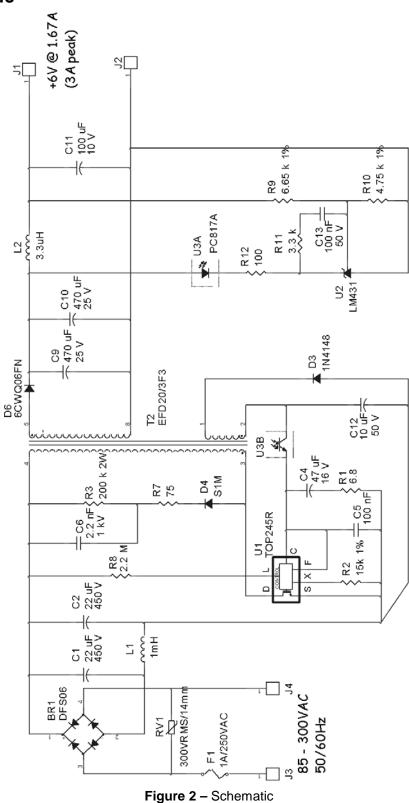



Figure 1 – Populated Circuit Board Photograph



**Power Integrations** 


www.powerint.com

# 2 Power Supply Specification

| Description                   | Symbol               | Min    | Тур               | Max                | Units  | Comment                                                                                            |
|-------------------------------|----------------------|--------|-------------------|--------------------|--------|----------------------------------------------------------------------------------------------------|
| Input                         |                      |        |                   |                    |        |                                                                                                    |
| Voltage                       | V <sub>IN</sub>      | 90     |                   | 300                | VAC    | 2 Wire – no P.E.                                                                                   |
| Frequency                     | f <sub>LINE</sub>    | 47     | 50/60             | 64                 | Hz     |                                                                                                    |
| No-load Input Power (240 VAC) |                      |        |                   | 0.5                | W      |                                                                                                    |
| Output                        |                      |        |                   |                    |        |                                                                                                    |
| Output Voltage 1              | V <sub>OUT1</sub>    |        | 6                 |                    | V      | ± 5%                                                                                               |
| Output Ripple Voltage 1       | V <sub>RIPPLE1</sub> |        | 100               |                    | mV     | 20 MHz bandwidth                                                                                   |
| Output Current 1              | I <sub>OUT1</sub>    |        | 1.67              |                    | А      |                                                                                                    |
| Total Output Power            |                      |        |                   |                    |        |                                                                                                    |
| Continuous Output Power       | Ρουτ                 |        |                   | 10                 | W      |                                                                                                    |
| Peak Output Power             | <b>P</b> OUT_PEAK    |        |                   | 18                 | W      | 2 minute duration                                                                                  |
| Efficiency                    | η                    | 75     |                   |                    | %      | Measured at $P_{\text{OUT}}$ (10 W), 25 $^{\circ}\text{C}$                                         |
| Environmental                 |                      |        |                   |                    |        |                                                                                                    |
| Conducted EMI                 |                      | Mee    | ts CISPR2         | 2B / EN55          | 5022B  |                                                                                                    |
| Safety                        |                      | Desigr | ned to mee<br>Cla | t IEC950,<br>ss II | UL1950 |                                                                                                    |
| Surge                         |                      | 4      |                   |                    | kV     | 1.2/50 μs surge, IEC 1000-4-5,<br>Series Impedance:<br>Differential Mode: 2 Ω<br>Common Mode: 12 Ω |
| Surge                         |                      | 4      |                   |                    | kV     | 100 kHz ring wave, 500 A short<br>circuit current, differential and<br>common mode                 |
| Ambient Temperature           | T <sub>AMB</sub>     | 0      |                   | 40                 | °C     | Free convection, sea level                                                                         |



# 3 Schematic





# 4 Circuit Description

The schematic in Figure 2 shows an off-line Flyback converter using the TOP245R. The circuit is designed for 90 VAC to 300 VAC input and 6 V, 1.67 A output, with a transient load requirement of 3 A for 2 minutes in duration.

## 4.1 Input EMI Filtering

Capacitor C1, C2 and L1 form in input p-filter for differential-mode conducted EMI. Common-mode conducted EMI is reduced with the ESHIELD winding technique employed in the transformer construction. A input X-capacitor and a Y-capacitor to bridge the isolation barrier are not required, due to the ESHIELD transformer construction and frequency dithering of the **TOPSwitch-GX**.

## 4.2 TOPSwitch Primary

Rectifier bridge BR1 and C1, C2 provide a high voltage DC BUS for the primary circuitry. The DC rail is applied to the primary winding of T2. The other side of the transformer primary is driven by the integrated MOSFET in U1. Diode D4, R7, R3 and C6 clamp leakage spikes generated when the MOSFET in U1 switches off. Resistor R8 sets the low-line turn-on threshold to approximately 69 VAC, and also sets the over-voltage shutdown level to approximately 320 VAC. R2 sets the U1 current limit to approximately 75% of its nominal value. This limits the output power delivered during fault conditions. C5 bypasses the U1 CONTROL pin. C4 has 3 functions. It provides the energy required by U1 during startup, sets the auto-restart frequency during fault conditions, and also acts to roll off the gain of U1 as a function of frequency. R1 adds a zero to stabilize the power supply control loop. Diode D3 and C12 provide rectified and filtered bias power for U3 and U1. The Frequency pin (F-pin) of U1 is tied to the Control pin (C-pin) to set the operating frequency of the U1 to 66kHz.

## 4.3 Output Rectification

The output of T2 is rectified and filtered by D6, C9, and C10. Inductor L2 and C11 provide additional high frequency filtering.

## 4.4 Output Feedback

Resistors R9 and R10 divide down the supply output voltage and apply it to the reference pin of error amplifier U2. Shunt regulator U2 drives optocoupler U3 through resistor R12 to provide feedback information to the U1 CONTROL pin. The optocoupler output also provides power to U1 during normal operating conditions.

Components C4, C13, R1, R11, and R12 all play a role in compensating the power supply control loop. Capacitor C4 rolls off the gain of U1 at relatively low frequency. Resistor R1 provides a zero to cancel the phase shift of C4. Resistor R12 sets the gain of the direct signal path from the supply output through U2 and U3. Components C13 and R11 roll off the gain of U2.



# 5 PCB Layout

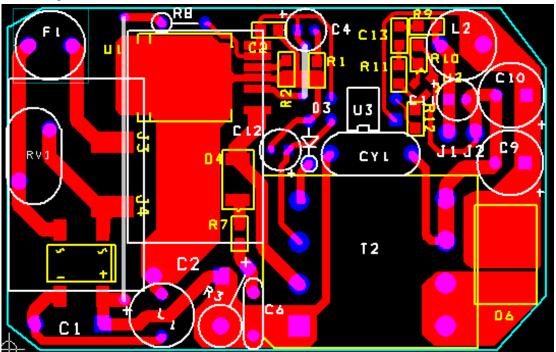



Figure 3 – Printed Circuit Layout



#### **Bill Of Materials** 6

| Item | QTY | Ref Des | Description                                                 | Value     | Mfg                    | Mfg Part Number   |
|------|-----|---------|-------------------------------------------------------------|-----------|------------------------|-------------------|
| 1    | 1   | BR1     | 600 V, 1 A, Bridge Rectifier, SMD, DFS                      | DFS06     | Vishay                 | DFS06             |
| 2    | 2   | C1 C2   | 22 uF, 450 V, Electrolytic, 105C (16 x 25)                  | 22 uF     | Nichicon               | UVZ2W220MHD       |
| 3    | 1   | C4      | 47 uF, 16 V, Electrolytic, Gen. Purpose, (5 x 11)           | 47 uF     | United Chemi-Con       | KME16VB47RM5X11LL |
| 4    | 2   | C5 C13  | 100 nF, 50 V, Ceramic, X7R                                  | 100 nF    | Panasonic              | ECU-S1H104KBB     |
| 5    | 1   | C6      | 2.2 nF, 1 kV, Disc Ceramic                                  | 2.2 nF    | NIC Components Corp    | NCD222K1KVY5F     |
| 6    | 2   | C9 C10  | 560 uF, 25 V, Electrolytic, Very Low ESR, 29 mOhm, (8 x 20) | 560 uF    | Rubycon                | 1EZLH560K8X20     |
| 7    | 1   | C11     | 100 uF, 10 V, Electrolytic, Low ESR, 500 mOhm, (5 x 11.5)   | 100 uF    | United Chemi-Con       | LXZ10VB101ME11LL  |
| 8    | 1   | C12     | 10 uF, 50 V, Electrolytic, Gen. Purpose, (5 x 11)           | 10 uF     | United Chemi-Con       | KMG50VB10RM5X11LL |
| 9    | 1   | D3      | 200 V, 300 mA, Fast Switching, DO-35                        | BAV21     | Vishay                 | BAV21             |
| 10   | 1   | D4      | 1000 V, 1 A, Rectifier, Glass Passivated, SMA               | S1M       | Vishay                 | S1M               |
| 11   | 1   | D6      | 60 V, 6 A, Schottky, SMD, DPAK                              | 6CWQ06    | IR                     | 6CWQ06            |
| 12   | 1   | F1      | 3.15 A, 250V, Slow, TR5                                     | FUSE      | Wickman                | 3821315041        |
| 13   | 1   | L1      | 1000 uH, 0.28 A                                             | 1mH       | Tokin                  | SBC3-102-281      |
| 14   | 1   | L2      | 3.3 uH, 5.5 A, 8.5 x 11 mm                                  | 3.3uH     | Toko                   | R622LY-3R3M       |
| 15   | 1   | R1      | 6.8 R, 5%, 0805                                             | 6.8       |                        |                   |
| 16   | 1   | R2      | 13.7 k, 1%, 0805                                            | 13.7 k    |                        |                   |
| 17   | 1   | R3      | 200 k, 5%, 1 W, Metal Oxide                                 | 200 k     | Yageo                  | RSF200JB-200K     |
| 18   | 1   | R7      | 75 R, 5%, 1/8 W, Metal Film, 0805                           | 75        |                        |                   |
| 19   | 1   | R8      | 2.2 M, 5%, 1/4 W, Carbon Film                               | 2.2 M     |                        |                   |
| 20   | 1   | R9      | 6.65 k, 1%, 1/4 W, Metal Film, 1206                         | 6.65 k    |                        |                   |
| 21   | 1   | R10     | 4.75 k, 1%, 1/4 W, Metal Film, 1206                         | 4.75 k    |                        |                   |
| 22   | 1   | R11     | 3.3 k, 5%, 1/8 W, Metal Film, 0805                          | 3.3 k     |                        |                   |
| 23   | 1   | R12     | 100 R, 1%, 1/8 W, Metal Film, 0805                          | 100       |                        |                   |
| 24   | 1   | RV1     | 300 V, 23 J, 7 mm, RADIAL                                   | VARISTOR  | Littlefuse             | V300LA4           |
| 25   | 1   | T2      | Bobbin, EFD20, Horizontal, 8 pins                           | BEFD20_8F | P, Yih-Hwa Enterprises | YW-272-03B        |
| 26   | 1   | U1      | TOPSwitch-GX, TOP245R, TO-263-7C                            | TOP245R   | Power Integrations     | TOP245R           |
| 27   | 1   | U2      | 2.495 V Shunt Regulator IC, 1%, -40 to 85C, SOT23           | LM431     | National Semiconductor | LM431BCM          |
| 28   | 1   | U3      | Opto coupler, 35 V, CTR 80-160%, 4-DIP                      | PC817A    | Isocom, Sharp          | ISP817A, PC817X1  |



**Power Integrations** 

# 7 Transformer Specification

## 7.1 Electrical Diagram

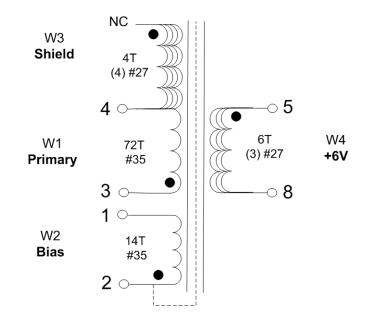



Figure 4 – Transformer Electrical Diagram

## 7.2 Electrical Specifications

| Electrical Strength        | 1 second, 60 Hz, from Pins 1-4 to Pins 5-8                       | 3000 VAC       |
|----------------------------|------------------------------------------------------------------|----------------|
| Primary Inductance         | Pins 3-4, all other windings open, measured at 100 kHz, 0.4 VRMS | 606 μH, -7/+7% |
| Resonant Frequency         | Pins 3-4, all other windings open                                | 800 kHz (Min.) |
| Primary Leakage Inductance | Pins 3-4, with Pins 5-8 shorted, measured at 100 kHz, 0.4 VRMS   | 100 μH (Max.)  |

## 7.3 Materials

| Item | Description                          |
|------|--------------------------------------|
| [1]  | Core: EFD20/3F3 AL = $104nH/T^2$     |
| [2]  | Bobbin: 8-pin                        |
| [3]  | Magnet Wire: #35 AWG Heavy Build     |
| [4]  | Magnet Wire: #27 AWG Heavy Build     |
| [5]  | Tape: 3M 3mm wide                    |
| [6]  | Tape, 3M                             |
| [7]  | Tape, 3M                             |
| [8]  | Copper tape 1.5 mil thick X 8mm wide |
| [9]  | Varnish                              |





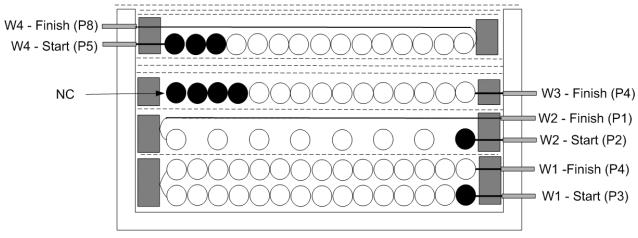



Figure 5 – Transformer Build Diagram

## 7.5 Transformer Construction

| Dall's Deserved                                                  |                                                                               |  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Bobbin Preparation                                               | Align bobbin to have pins 1-4 facing the mandrill                             |  |
| Primary Margin                                                   | Apply 3 mm wide margin on either side of bobbin with item [5]. Match          |  |
| · · · · · · · · · · · · · · · · · · ·                            | height of primary and bias windings.                                          |  |
| Drimory                                                          | Start at Pin 3. Wind 76 turns of item [3] in approximately 2 layers, finish   |  |
| Primary                                                          | on Pin 4.                                                                     |  |
| Basic Insulation                                                 | Use one layer of item [6] for basic insulation.                               |  |
| Bias Winding                                                     | Starting at Pin 2, wind 14 turns of item [3] uniformly across bobbin width    |  |
| Bias Winding                                                     | in a single layer. Finish at Pin 1.                                           |  |
| Basic Insulation Use one layer of item [6] for basic insulation. |                                                                               |  |
| Drimony Morain                                                   | Apply 3 mm wide margin on either side of bobbin with item [5]. Match          |  |
| Primary Margin                                                   | height of balanced shield winding.                                            |  |
| Rolonand Shield                                                  | Start temporarily on pin 6. Wind 4 turns of quadrifilar item [4] uniformly    |  |
| Balanced Shield                                                  | across the bobbin width in a single layer. Finish on pin 4. Cut start of      |  |
| Winding                                                          | winding at 90-degree bend to center of bobbin window.                         |  |
| Reinforced                                                       | Use three layers of item [7] for reinforced insulation.                       |  |
| Insulation                                                       | ,                                                                             |  |
| Secondary Marata                                                 | Apply 3 mm wide margin on either side of bobbin with item [5]. Match          |  |
| Secondary Margin                                                 | height of secondary winding.                                                  |  |
| Secondom: M/indian                                               | Start at Pin 5. Wind 6 trifilar turns of item [4]. Spread turns evenly across |  |
| Secondary Winding                                                | bobbin in a single layer. Finish on Pin 8.                                    |  |
| Outer Wrap                                                       | Wrap windings with 3 layers of tape (item [7]).                               |  |
| Core Preparation                                                 | Affix cores (item [1]) with tape [5].                                         |  |
| -                                                                | Wrap one turn of copper tape [8] around outer core. Ensure copper tape        |  |
| Outer Belly band                                                 | makes contact with core halves. Solder wire from pin 2 of bobbin to           |  |
| -                                                                | copper bellyband.                                                             |  |
| Final Assembly                                                   | Wrap three layers of tape [7]. Varnish impregnate (item [9]).                 |  |



# 8 PIXL Transformer Spreadsheet

| ACDC_TOPSwitchGX_113004;<br>Rev.2.2; Copyright Power<br>Integrations Inc. 2004 | INPUT         | INFO            | OUTPUT       | UNIT      | TOP_GX_FX_113004.xls:<br>TOPSwitch-GX/FX<br>Continuous/Discontinuous<br>Flyback Transformer Design<br>Spreadsheet |
|--------------------------------------------------------------------------------|---------------|-----------------|--------------|-----------|-------------------------------------------------------------------------------------------------------------------|
| ENTER APPLICATION VARIAB                                                       | BLES          |                 |              |           |                                                                                                                   |
| VACMIN                                                                         | 85            |                 |              | Volts     |                                                                                                                   |
| VACMAX                                                                         | 300           |                 |              | Volts     | Maximum AC Input Voltage                                                                                          |
| fL                                                                             | 50            |                 |              | Hertz     | AC Mains Frequency                                                                                                |
| VO                                                                             | 6             |                 |              | Volts     | Output Voltage                                                                                                    |
| PO                                                                             | 18            |                 |              | Watts     | Output Power                                                                                                      |
| n                                                                              | 0.73          |                 |              |           | Efficiency Estimate                                                                                               |
| Z                                                                              | 0.5           |                 |              |           | Loss Allocation Factor                                                                                            |
| VB                                                                             | 15            |                 |              | Volts     | Bias Voltage                                                                                                      |
| tC                                                                             | 3             |                 |              | mSeconds  | Bridge Rectifier Conduction Time<br>Estimate                                                                      |
| CIN                                                                            | 44            |                 |              | uFarads   | Input Filter Capacitor                                                                                            |
|                                                                                |               |                 |              |           |                                                                                                                   |
| ENTER TOPSWITCH-GX VARI                                                        |               |                 | 1            |           | 445 D 44 4000V                                                                                                    |
| TOP-GX                                                                         | <b>TOP245</b> |                 | _            | Universal | 115 Doubled/230V                                                                                                  |
| Chosen Device                                                                  |               | TOP245          | Power<br>Out | 60W       | 85W                                                                                                               |
| KI                                                                             | 0.8           |                 |              |           | External Ilimit reduction factor<br>(KI=1.0 for default ILIMIT, KI<br><1.0 for lower ILIMIT)                      |
| ILIMITMIN                                                                      |               |                 | 1.296        | Amps      | Use 1% resistor in setting<br>external ILIMIT                                                                     |
| ILIMITMAX                                                                      |               |                 | 1.584        | Amps      | Use 1% resistor in setting<br>external ILIMIT                                                                     |
| Frequency (F)=132kHz,<br>(H)=66kHz                                             | h             |                 |              |           | Half (H) frequency option -<br>66kHz                                                                              |
| fS                                                                             |               |                 | 66000        | Hertz     | TOPSwitch-GX Switching<br>Frequency: Choose between<br>132 kHz and 66 kHz                                         |
| fSmin                                                                          |               |                 | 61500        | Hertz     | TOPSwitch-GX Minimum<br>Switching Frequency                                                                       |
| fSmax                                                                          |               |                 | 70500        | Hertz     | TOPSwitch-GX Maximum<br>Switching Frequency                                                                       |
| VOR                                                                            | 82            |                 |              | Volts     | Reflected Output Voltage                                                                                          |
| VDS                                                                            | 10            |                 |              | Volts     | TOPSwitch on-state Drain to<br>Source Voltage                                                                     |
| VD                                                                             | 0.5           |                 |              | Volts     | Output Winding Diode Forward<br>Voltage Drop                                                                      |
| VDB                                                                            | 0.7           |                 |              | Volts     | Bias Winding Diode Forward<br>Voltage Drop                                                                        |
| КР                                                                             | 0.9415        |                 |              |           | Ripple to Peak Current Ratio<br>(0.4 < KRP < 1.0 : 1.0<<br>KDP<6.0)                                               |
|                                                                                |               |                 |              |           |                                                                                                                   |
| ENTER TRANSFORMER COR                                                          |               | ICTION VARIABLE | :5           |           |                                                                                                                   |
| Core Type                                                                      | efd20         |                 |              |           |                                                                                                                   |
| Core                                                                           |               | EFD20           |              | P/N:      | EFD20-3F3                                                                                                         |



| Bobbin              |                | EFD20_BOBBIN   |          | P/N:       | CSH-EFD20-1S-8P                                                                        |
|---------------------|----------------|----------------|----------|------------|----------------------------------------------------------------------------------------|
| AE                  | 0.58           |                | 0.58     | cm^2       | Core Effective Cross Sectional<br>Area                                                 |
| LE                  | 5.7            |                | 5.7      | cm         | Core Effective Path Length                                                             |
| AL                  | 1800           |                | 1800     | nH/T^2     | Ungapped Core Effective<br>Inductance                                                  |
| BW                  | 16.4           |                | 16.4     | mm         | Bobbin Physical Winding Width                                                          |
| Μ                   | 3              |                |          | mm         | Safety Margin Width (Half the<br>Primary to Secondary Creepage<br>Distance)            |
| L                   | 2              |                |          |            | Number of Primary Layers                                                               |
| NS                  | 6              |                |          |            | Number of Secondary Turns                                                              |
| DC INPUT VOLTAGE PA | ARAMETERS      |                |          |            |                                                                                        |
| VMIN                |                |                | 81       | Volts      | Minimum DC Input Voltage                                                               |
| VMAX                |                |                | 424      | Volts      | Maximum DC Input Voltage                                                               |
| CURRENT WAVEFORM    | SHAPE PARAME   | TERS           |          |            |                                                                                        |
| DMAX                |                |                | 0.54     |            | Maximum Duty Cycle                                                                     |
| IAVG                |                |                | 0.30     | Amps       | Average Primary Current                                                                |
| IP                  |                |                | 1.07     | Amps       | Peak Primary Current                                                                   |
| IR                  |                |                | 1.01     | Amps       | Primary Ripple Current                                                                 |
| IRMS                |                |                | 0.47     | Amps       | Primary RMS Current                                                                    |
| TRANSFORMER PRIMA   | RY DESIGN PAR  | AMETERS        |          |            |                                                                                        |
| LP                  |                |                | 606      | uHenries   | Primary Inductance                                                                     |
| NP                  |                |                | 76       |            | Primary Winding Number of<br>Turns                                                     |
| NB                  |                |                | 14       |            | Bias Winding Number of Turns                                                           |
| ALG                 |                |                | 106      | nH/T^2     | Gapped Core Effective<br>Inductance                                                    |
| BM                  |                |                | 1480     | Gauss      | Maximum Flux Density at PO,<br>VMIN (BM<3000)                                          |
| BP                  |                |                | 2187     | Gauss      | Peak Flux Density (BP<4200)                                                            |
| BAC                 |                |                | 696      | Gauss      | AC Flux Density for Core Loss<br>Curves (0.5 X Peak to Peak)                           |
| ur                  |                |                | 1408     |            | Relative Permeability of<br>Ungapped Core                                              |
| LG                  |                |                | 0.65     | mm         | Gap Length (Lg > 0.1 mm)                                                               |
| BWE                 |                |                | 20.8     | mm         | Effective Bobbin Width                                                                 |
| OD                  |                |                | 0.27     | mm         | Maximum Primary Wire<br>Diameter including insulation                                  |
| INS                 |                |                | 0.05     | mm         | Estimated Total Insulation<br>Thickness (= 2 * film thickness)                         |
| DIA                 |                |                | 0.22     | mm         | Bare conductor diameter                                                                |
| AWG                 |                |                | 32       | AWG        | Primary Wire Gauge (Rounded<br>to next smaller standard AWG<br>value)                  |
| СМ                  |                |                | 64       | Cmils      | Bare conductor effective area in circular mils                                         |
| СМА                 |                | Warning        | 137      | Cmils/Amp  | IIIIIIIII INCREASE CMA>200<br>(increase L(primary layers),decrease<br>NS, larger Core) |
| TRANSFORMER SECO    | NDARY DESIGN P | ARAMETERS (SIN | GLE OUTP | UT EQUIVAL | ENT)                                                                                   |
| Lumped parameters   |                | ,              |          |            |                                                                                        |
| ISP                 |                |                | 13.52    | Amps       | Peak Secondary Current                                                                 |
|                     |                |                |          |            |                                                                                        |



| ISRMS                                                                                                    |                                                        | 5.48                                                                                     | Amps                                                                                       | Secondary RMS Current                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10                                                                                                       |                                                        | 3.00                                                                                     | Amps                                                                                       | Power Supply Output Current                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IRIPPLE                                                                                                  |                                                        | 4.59                                                                                     | Amps                                                                                       | Output Capacitor RMS Ripple<br>Current                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CMS                                                                                                      |                                                        | 1097                                                                                     | Cmils                                                                                      | Secondary Bare Conductor<br>minimum circular mils                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AWGS                                                                                                     |                                                        | 19                                                                                       | AWG                                                                                        | Secondary Wire Gauge<br>(Rounded up to next larger<br>standard AWG value)                                                                                                                                                                                                                                                                                                                                                                                                         |
| DIAS                                                                                                     |                                                        | 0.91                                                                                     | mm                                                                                         | Secondary Minimum Bare<br>Conductor Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ODS                                                                                                      |                                                        | 1.73                                                                                     | mm                                                                                         | Secondary Maximum Outside<br>Diameter for Triple Insulated<br>Wire                                                                                                                                                                                                                                                                                                                                                                                                                |
| INSS                                                                                                     |                                                        | 0.41                                                                                     | mm                                                                                         | Maximum Secondary Insulation<br>Wall Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VOLTAGE STRESS PAR                                                                                       |                                                        |                                                                                          |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VDRAIN                                                                                                   |                                                        | 616                                                                                      | Volts                                                                                      | Maximum Drain Voltage<br>Estimate (Includes Effect of<br>Leakage Inductance)                                                                                                                                                                                                                                                                                                                                                                                                      |
| PIVS                                                                                                     |                                                        | 40                                                                                       | Volts                                                                                      | Output Rectifier Maximum Peak<br>Inverse Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PIVB                                                                                                     |                                                        | 96                                                                                       | Volts                                                                                      | Bias Rectifier Maximum Peak<br>Inverse Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TRANSFORMER SECO                                                                                         | NDARY DESIGN PARAMETE                                  | RS (MULTIPLE OU                                                                          | TPUTS)                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                          |                                                        |                                                                                          |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VO1                                                                                                      | 6.0                                                    | 6                                                                                        | Volts                                                                                      | Output Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VO1                                                                                                      | 6.0                                                    | 6                                                                                        | Volts<br>Amps                                                                              | Output Voltage<br>Output DC Current                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IO1                                                                                                      | 6.0<br>3.000                                           | 3                                                                                        | Amps                                                                                       | Output DC Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                          |                                                        |                                                                                          |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IO1<br>PO1                                                                                               | 3.000                                                  | 3<br>18.00                                                                               | Amps<br>Watts                                                                              | Output DC Current<br>Output Power<br>Output Diode Forward Voltage                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IO1<br>PO1<br>VD1                                                                                        | 3.000                                                  | 3<br>18.00<br>0.5                                                                        | Amps<br>Watts                                                                              | Output DC Current<br>Output Power<br>Output Diode Forward Voltage<br>Drop                                                                                                                                                                                                                                                                                                                                                                                                         |
| IO1<br>PO1<br>VD1<br>NS1<br>ISRMS1<br>IRIPPLE1                                                           | 3.000                                                  | 3<br>18.00<br>0.5<br>6.00                                                                | Amps<br>Watts<br>Volts<br>Amps<br>Amps                                                     | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple   Current                                                                                                                                                                                                                                                                                                      |
| IO1<br>PO1<br>VD1<br>NS1<br>ISRMS1                                                                       | 3.000                                                  | 3<br>18.00<br>0.5<br>6.00<br>5.484                                                       | Amps<br>Watts<br>Volts<br>Amps                                                             | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple                                                                                                                                                                                                                                                                                                                |
| IO1<br>PO1<br>VD1<br>NS1<br>ISRMS1<br>IRIPPLE1                                                           | 3.000                                                  | 3<br>18.00<br>0.5<br>6.00<br>5.484<br>4.59                                               | Amps<br>Watts<br>Volts<br>Amps<br>Amps                                                     | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple   Current   Output Rectifier Maximum Peak   Inverse Voltage   Output Winding Bare Conductor                                                                                                                                                                                                                    |
| IO1<br>PO1<br>VD1<br>NS1<br>ISRMS1<br>IRIPPLE1<br>PIVS1                                                  | 3.000                                                  | 3<br>18.00<br>0.5<br>6.00<br>5.484<br>4.59<br>40                                         | Amps<br>Watts<br>Volts<br>Amps<br>Amps<br>Volts                                            | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple   Current   Output Rectifier Maximum Peak   Inverse Voltage   Output Winding Bare Conductor   minimum circular mils   Wire Gauge (Rounded up to next                                                                                                                                                           |
| IO1<br>PO1<br>VD1<br>NS1<br>ISRMS1<br>IRIPPLE1<br>PIVS1<br>CMS1                                          | 3.000                                                  | 3<br>18.00<br>0.5<br>6.00<br>5.484<br>4.59<br>40<br>1097                                 | Amps<br>Watts<br>Volts<br>Amps<br>Amps<br>Volts<br>Cmils                                   | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple   Current   Output Rectifier Maximum Peak   Inverse Voltage   Output Winding Bare Conductor   minimum circular mils   Wire Gauge (Rounded up to next   larger standard AWG value)   Minimum Bare Conductor   Diameter                                                                                          |
| IO1<br>PO1<br>VD1<br>NS1<br>ISRMS1<br>IRIPPLE1<br>PIVS1<br>CMS1<br>AWGS1                                 | 3.000                                                  | 3     18.00     0.5     6.00     5.484     4.59     40     1097     19                   | Amps<br>Watts<br>Volts<br>Amps<br>Amps<br>Volts<br>Cmils<br>AWG                            | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple   Current   Output Rectifier Maximum Peak   Inverse Voltage   Output Winding Bare Conductor   minimum circular mils   Wire Gauge (Rounded up to next   larger standard AWG value)   Minimum Bare Conductor                                                                                                     |
| IO1<br>PO1<br>VD1<br>NS1<br>ISRMS1<br>IRIPPLE1<br>PIVS1<br>CMS1<br>AWGS1<br>DIAS1<br>ODS1                | 3.000                                                  | 3<br>18.00<br>0.5<br>6.00<br>5.484<br>4.59<br>40<br>1097<br>19<br>0.91                   | Amps<br>Watts<br>Volts<br>Amps<br>Amps<br>Volts<br>Cmils<br>AWG<br>mm                      | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple   Current   Output Rectifier Maximum Peak   Inverse Voltage   Output Winding Bare Conductor   minimum circular mils   Wire Gauge (Rounded up to next   larger standard AWG value)   Minimum Bare Conductor   Diameter   Maximum Outside Diameter for                                                           |
| IO1   PO1   VD1   NS1   ISRMS1   IRIPPLE1   PIVS1   CMS1   AWGS1   DIAS1   ODS1   2nd output             |                                                        | 3<br>18.00<br>0.5<br>6.00<br>5.484<br>4.59<br>40<br>1097<br>19<br>0.91                   | Amps<br>Watts<br>Volts<br>Amps<br>Amps<br>Volts<br>Cmils<br>AWG<br>mm<br>mm                | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple   Current   Output Rectifier Maximum Peak   Inverse Voltage   Output Winding Bare Conductor   minimum circular mils   Wire Gauge (Rounded up to next   larger standard AWG value)   Minimum Bare Conductor   Diameter   Maximum Outside Diameter for   Triple Insulated Wire                                   |
| IO1   PO1   VD1   NS1   ISRMS1   IRIPPLE1   PIVS1   CMS1   AWGS1   DIAS1   ODS1 <b>2nd output</b> VO2    | 3.000<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 3<br>18.00<br>0.5<br>6.00<br>5.484<br>4.59<br>40<br>1097<br>19<br>0.91                   | Amps<br>Watts<br>Volts<br>Amps<br>Amps<br>Volts<br>Cmils<br>Cmils<br>AWG<br>mm<br>mm<br>Mm | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple   Current   Output Rectifier Maximum Peak   Inverse Voltage   Output Winding Bare Conductor   minimum circular mils   Wire Gauge (Rounded up to next   larger standard AWG value)   Minimum Bare Conductor   Diameter   Maximum Outside Diameter for   Triple Insulated Wire   Output Voltage                  |
| IO1   PO1   VD1   NS1   ISRMS1   IRIPPLE1   PIVS1   CMS1   AWGS1   DIAS1   ODS1   Znd output   VO2   IO2 |                                                        | 3     18.00     0.5     6.00     5.484     4.59     40     1097     19     0.91     1.73 | Amps<br>Watts<br>Volts<br>Amps<br>Amps<br>Volts<br>Cmils<br>Cmils<br>AWG<br>mm<br>mm<br>Mm | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple   Current   Output Rectifier Maximum Peak   Inverse Voltage   Output Winding Bare Conductor   minimum circular mils   Wire Gauge (Rounded up to next   larger standard AWG value)   Minimum Bare Conductor   Diameter   Maximum Outside Diameter for   Triple Insulated Wire   Output Voltage   Output Voltage |
| IO1   PO1   VD1   NS1   ISRMS1   IRIPPLE1   PIVS1   CMS1   AWGS1   DIAS1   ODS1 <b>2nd output</b> VO2    | 3.000<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 3<br>18.00<br>0.5<br>6.00<br>5.484<br>4.59<br>40<br>1097<br>19<br>0.91                   | Amps<br>Watts<br>Volts<br>Amps<br>Amps<br>Volts<br>Cmils<br>Cmils<br>AWG<br>mm<br>mm<br>Mm | Output DC Current   Output Power   Output Diode Forward Voltage   Drop   Output Winding Number of Turns   Output Winding RMS Current   Output Capacitor RMS Ripple   Current   Output Rectifier Maximum Peak   Inverse Voltage   Output Winding Bare Conductor   minimum circular mils   Wire Gauge (Rounded up to next   larger standard AWG value)   Minimum Bare Conductor   Diameter   Maximum Outside Diameter for   Triple Insulated Wire   Output Voltage                  |



| ISRMS2   | 3.053 | Amps  | Output Winding RMS Current                                   |
|----------|-------|-------|--------------------------------------------------------------|
| IRIPPLE2 | 2.56  | Amps  | Output Capacitor RMS Ripple<br>Current                       |
| PIVS2    | 40    | Volts | Output Rectifier Maximum Peak<br>Inverse Voltage             |
|          |       |       |                                                              |
| CMS2     | 611   | Cmils | Output Winding Bare Conductor<br>minimum circular mils       |
| AWGS2    | 22    | AWG   | Wire Gauge (Rounded up to next<br>larger standard AWG value) |
| DIAS2    | 0.65  | mm    | Minimum Bare Conductor<br>Diameter                           |
| ODS2     | 1.73  | mm    | Maximum Outside Diameter for<br>Triple Insulated Wire        |



# 9 Performance Data

All measurements performed at room temperature, 60 Hz input frequency.

## 9.1 Efficiency

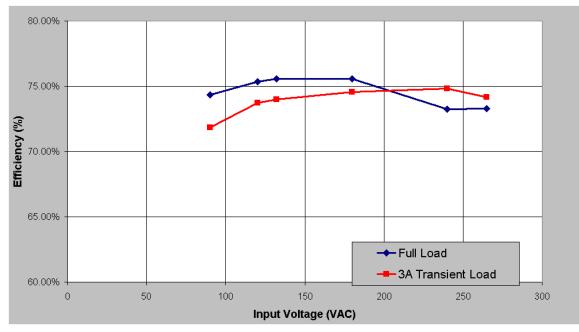
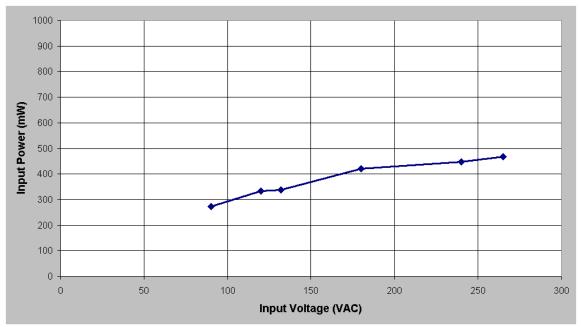
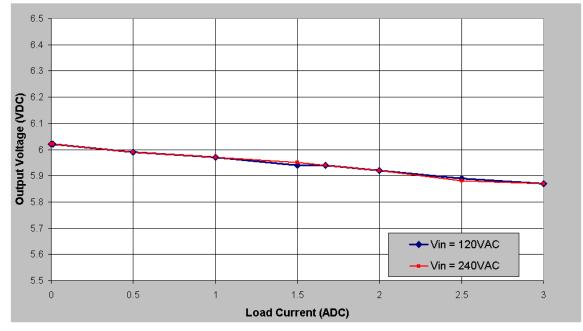
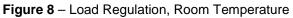




Figure 6 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.




## 9.2 No-load Input Power


Figure 7 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz



## 9.3 Regulation









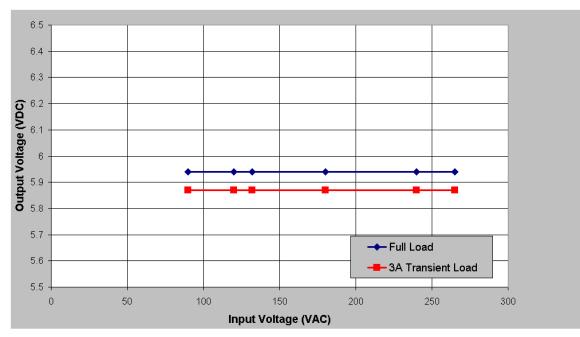
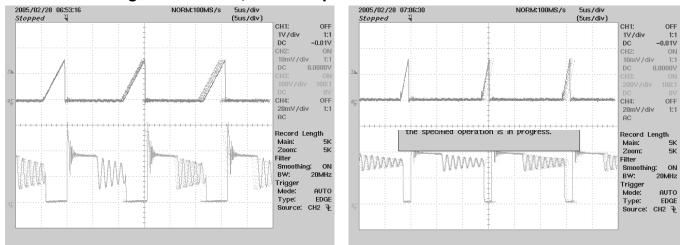




Figure 9 – Line Regulation, Room Temperature, Full Load



# **10 Waveforms**

## 10.1 Drain Voltage and Current, Normal Operation



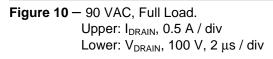



Figure 11 – 265 VAC, Full Load Upper: I<sub>DRAIN</sub>, 0.5 A / div Lower: V<sub>DRAIN</sub>, 200 V / div

## 10.2 Output Voltage Start-up Profile at Full Load

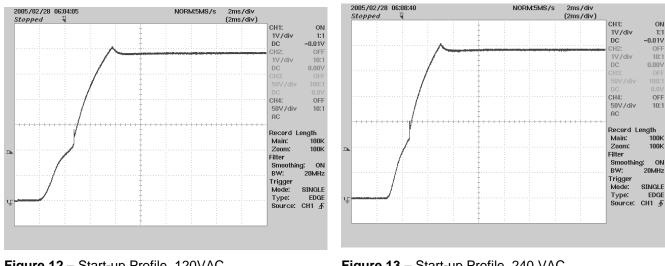



Figure 12 – Start-up Profile, 120VAC 1 V, 2 ms / div.

## Figure 13 – Start-up Profile, 240 VAC 1 V, 2 ms / div.





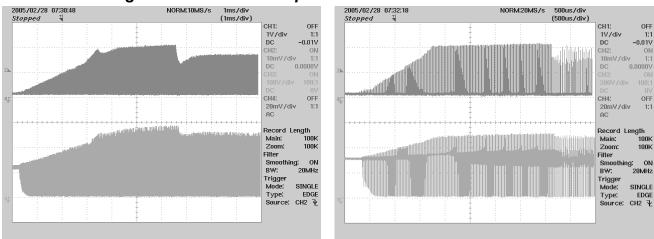



Figure 14 – 90 VAC Input and Maximum Load. Upper: I<sub>DRAIN</sub>, 0.5 A / div. Lower: V<sub>DRAIN</sub>, 100 V & 1 ms / div.

Figure 15 – 265 VAC Input and Maximum Load. Upper:  $I_{DRAIN}$ , 0.5 A / div. Lower:  $V_{DRAIN}$ , 200 V & 1 ms / div.



## 10.4 Load Transient Response (Load Step)

In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response.

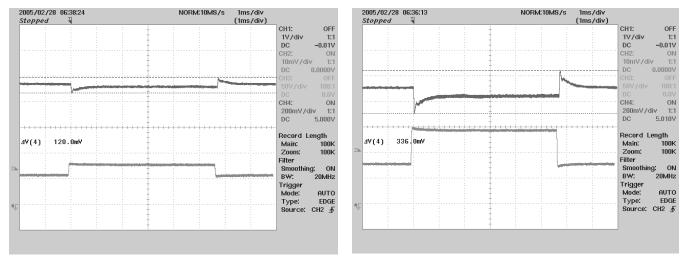



Figure 16 – Transient Response, 120 VAC, 75-100-75% Load Step. Bottom: Load Current, 1 A/div. Top: Output Voltage 2000 mV, 5V offset, 1ms / div. Figure 17 – Transient Response, 120 VAC, 100-180-100% Load Step Bottom: Load Current, 1 A/ div. Top: Output Voltage 200 mV 5V offset, 1 ms / div.



## 10.5 Output Ripple Measurements

## 10.5.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 18 and Figure 19.

The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1  $\mu$ F/50 V ceramic type and one (1) 1.0  $\mu$ F/50 V aluminum electrolytic. *The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).* 

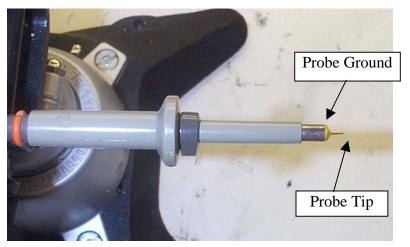


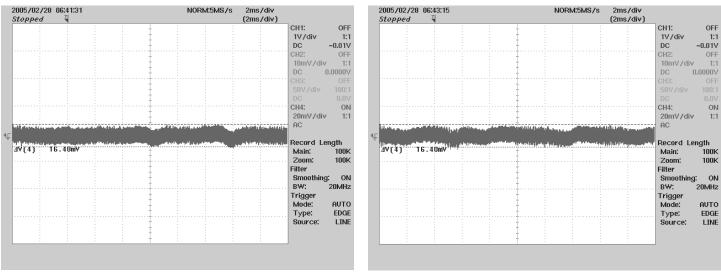

Figure 18 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

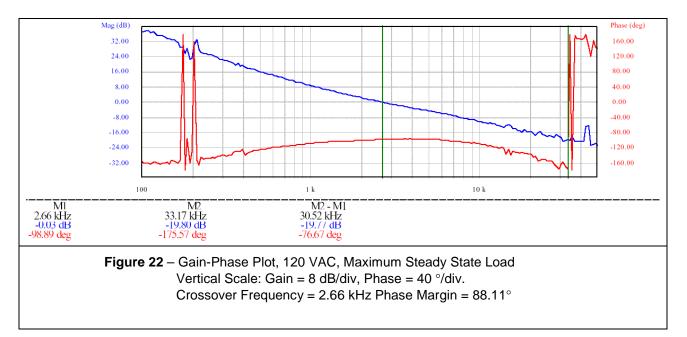


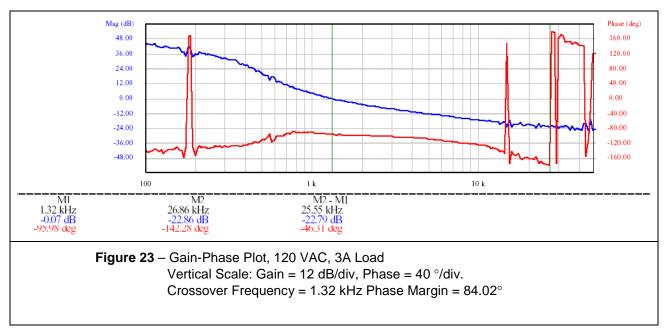
Figure 19 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added)



## 10.5.2 Measurement Results

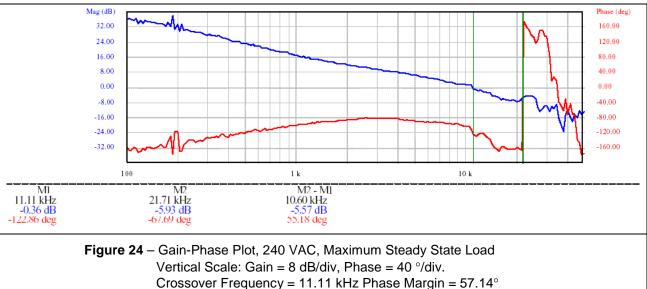


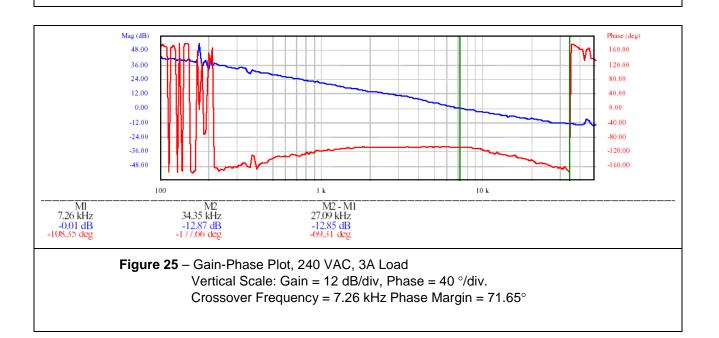


Figure 20 – Ripple, 120VAC, Full Load. 2 ms, 20 mV / div


Figure 21 – Ripple, 240VAC, Full Load. 2 ms, 20 mV / div



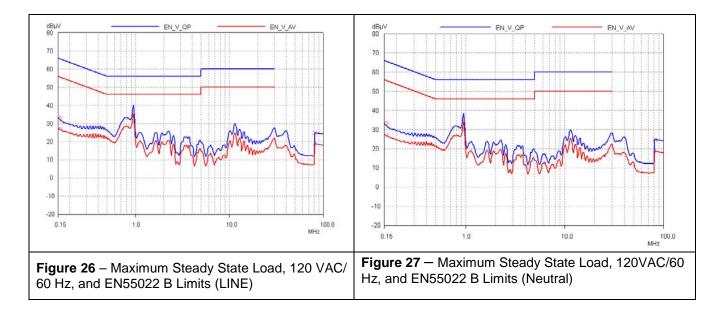
# **11 Control Loop Measurements**

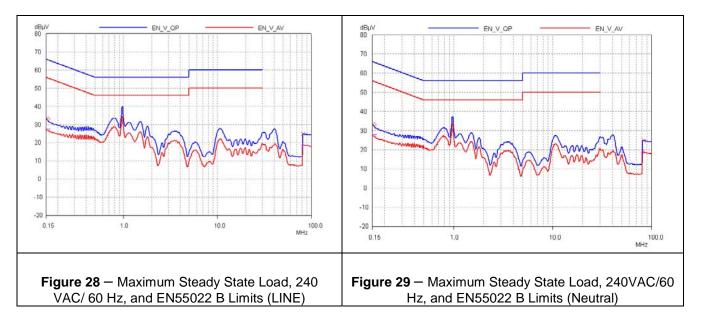

## 11.1 120 VAC Maximum and 3A Load












# **12 Conducted EMI**







# 13 Revision History

| <b>Date</b> | Author | <b>Revision</b> | Description & changes | <b>Reviewed</b> |
|-------------|--------|-----------------|-----------------------|-----------------|
| 10-26-05    | RSP    | 1.0             | Initial Release       | KM/JC/VC        |



## For the latest updates, visit our website: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

## PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm.

The PI Logo, **TOPSwitch**, **TinySwitch**, **LinkSwitch**, **DPA-Switch**, **EcoSmart**, **PI Expert** and **PI FACTS** are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2005 Power Integrations, Inc.

## **Power Integrations Worldwide Sales Support Locations**

### WORLD HEADQUARTERS

5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 *e-mail: usasales@powerint.com* 

## CHINA (SHANGHAI)

Rm 807-808A, Pacheer Commercial Centre, 555 Nanjing Rd. West Shanghai, P.R.C. 200041 Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 *e-mail: chinasales@powerint.com* 

### CHINA (SHENZHEN)

Room 2206-2207, Block A, Elec. Sci. Tech. Bldg. 2070 Shennan Zhong Rd. Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 *e-mail: chinasales@powerint.com* 

#### GERMANY Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3910 Fax: +49-89-5527-3920 *e-mail: eurosales@powerint.com*

## INDIA

261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore, India 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 *e-mail: indiasales@powerint.com* 

## ITALY

Via Vittorio Veneto 12 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 *e-mail: eurosales@powerint.com* 

#### JAPAN

Keihin Tatemono 1<sup>st</sup> Bldg 2-12-20 Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa ken, Japan 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 *e-mail: japansales@powerint.com* 

## KOREA

RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 *e-mail: koreasales@powerint.com* 

### SINGAPORE

51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 *e-mail:* singaporesales@powerint.com

#### TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 *e-mail:* taiwansales@powerint.com

### **EUROPE HQ**

1st Floor, St. James's House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-140 Fax: +44 (0) 1252-727-689 *e-mail: eurosales@powerint.com* 

### APPLICATIONS HOTLINE World Wide +1-408-414-9660

APPLICATIONS FAX World Wide +1-408-414-9760

